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Abstract. Practice and policy have emphasised the need for building resilience to climate-related events in a 

further warming world. Scholarship has studied resilience largely in terms of process, latent capacity informing 10 

vulnerability, or outcome of risk management interventions, with little work integrating these perspectives. 

Implementation science work by the Climate Resilience Alliance has developed the Flood Resilience 

Measurement for Communities (FRMC) process and tool to measure resilience as outcome (post-flood mortality 

and morbidity reduction) and as capacity (pre- and post-intervention levels). This article builds on FRMC 

analytics to investigate the effect of resilience capacity, represented by five capitals, and five stages of the 15 

Disaster Risk Management Cycle (DRM), on injury and mortality outcomes across 66 flood-affected 

communities in seven Global South countries. Using a quasi-experimental design with regression adjustment, 

we analyse the relationship between resilience levels, DRM stages, and health outcomes. Results show that 

social and human capital help reduce injuries after floods, and preparedness lowers both deaths and injuries. 

Some results were unexpected, such as the positive association between natural capital and delayed deaths, 20 

where limited gains in natural capital may not yield meaningful protection in communities with degraded 

ecosystems. 

1 Introduction 

Floods are the most frequent disaster triggered by environmental extremes and account for the highest disaster-

related death rate (Yari et al., 2020). Also, floods cause severe health impacts worldwide, particularly affecting 25 

lower-income, densely populated regions (Escobar Carías et al., 2022; Lynch et al., 2025). Research highlights 

that mortality and morbidity during and after floods are shaped by a variety of individual and community risk 

factors, including hazard event type, intensity and duration (Birkmann et al., 2022) and factors associated with 

exposure and vulnerability including age (Petrucci, 2022; Yang et al., 2023), gender (Jerin et al., 2024; 

Mucherera and Mavhura, 2020), urban-rural location (Petrucci, 2022), and various other drivers, such as access 30 

to finance post-disaster, hazard awareness, quality of early warning and disaster response – all of which 

significantly determine risk and actual impacts of affected populations in disaster events as well as inform 

interventions to build resilience (Chapagain et al., 2024b).  

Although the impact of demographic factors – such as age, gender, and rural or urban residence – on flood-

related mortality and morbidity is well-documented, the role of community-level resilience and stages of DRM 35 

cycle, when accounting for demographic factors and flood exposure/hazard, is less clear. One study has 
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explored the role of five capitals (social, human, financial, physical, natural) as drivers of vulnerability on total 

injuries and fatalities, controlling for flood exposure, but with no control for demographics (Chapagain et al., 

2024b). Another study analysed the obstacles encountered at different stages of the disaster risk management 

cycle concerning rural flooding in Pakistan. Employing a qualitative approach with focus groups and key 40 

informant interviews in the Khyber Pakhtunkhwa province, the study identified challenges in risk reduction, 

preparedness, rescue and relief, and rehabilitation and recovery phases (Shah et al., 2023). 

Understanding resilience has proceeded. Drawing on Alexander (2013), resilience has evolved from an 

outcome-oriented concept - “bouncing back” after disturbance - to one that also includes latent features such as 

inherent capacity and adaptive potential. Initially defined by its etymology and early scientific use in mechanics 45 

(resisting and absorbing force), resilience concepts have been advanced to reflect deeper systemic traits in 

ecology (absorbing shocks while maintaining function), psychology (individual adaptation to adversity), and the 

social sciences (community robustness and flexibility for transformation). In disaster risk reduction (and climate 

adaptation) research and implementation, dimensions have seen attention and resilience has been analyzed as 

observable outcomes after events and latent qualities before events - like adaptability, resistance, and 50 

transformative capacity - that enable systems to withstand and evolve through disruption (Alexander, 2013). 

Little work has integrated outcome and capacity, however. 

Furthermore, understanding resilience and DRM stages effects and their interactions with demographic profiles 

and exposure are essential for developing effective policy interventions. Available evidence suggests that 

investing in building community resilience to floods reduces the negative impacts of these events on human 55 

health and well-being along a DRM cycle aims to avoid, lessen, or transfer the adverse effects of floods, 

contributing to better flood outcomes by guiding integrated and proactive management strategies (Hochrainer-

Stigler et al., 2020, 2021; Keating et al., 2017a; Laurien et al., 2020). 

This article uses the Flood Resilience Measurement for Communities (FRMC) tool to examine the role of 

capacities in reducing fatalities (immediate and delayed) and injury outcomes for 66 flood-affected communities 60 

across seven countries. Recent global analysis of the FRMC’s large-scale application across nearly 400 

communities further validates its use, highlighting consistent patterns in how different resilience dimensions 

relate to recovery outcomes (Keating et al., 2025). 

The analysis controls for demographic factors and flood exposure/hazard. Communities are grouped into four 

resilience clusters and two DRM cycle groups to reflect the tendency of similar capital levels and DRM coping 65 

capacities (Hochrainer-Stigler et al., 2021; Keating et al., 2025). A quasi-experimental research design with 

regression adjustment is applied to evaluate the distinct influence of resilience and DRM cycle stages on 

morbidity and mortality outcomes after controlling for confounders. 

Our findings emphasize the critical role of resilience and Disaster Risk Management (DRM) cycle stages in 

shaping health and mortality outcomes after a flood event. Social and Natural capital were assessed to be 70 

effective in reducing injuries. DRM models demonstrated stronger predictive power, with Preparedness 

significantly decreasing both fatalities and injuries. Meanwhile, Corrective Risk Reduction lowered injury rates. 

Nevertheless, we found some unexpected results. For instance, the positive association between natural capital 

and delayed mortality may reflect the vulnerability of communities with degraded ecosystems, where limited 

improvements fail to yield meaningful health benefits. Similarly, unexpected patterns in the DRM stages, such 75 
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as higher mortality associated with corrective risk reduction, may be explained by lagged effects or 

measurement timing relative to implementation efforts. 

The paper is structured as follows: Section 2 outlines the conceptual frameworks, focusing on the FRMC five-

capitals model and the DRM cycle stages. Section 3 reviews literature on factors influencing flood-related 

mortality and morbidity, including demographic characteristics and flood exposure/hazard. Section 4 describes 80 

the FRMC data used for analysis. Section 5 details the methodology applied. Section 6 presents the study 

results, while Section 7 discusses the key findings and limitations of the study. 

2 Conceptual Frameworks 

This section outlines the conceptual frameworks used to analyse the impact variables, emphasizing their 

theoretical components and relevant literature. 85 

2.1 The FRMC capitals framework (5Cs)  

The Flood Resilience Measurement for Communities (FRMC) framework is a tool designed to measure and 

analyse a community's resilience to flooding. The FRMC has been developed by the Flood Resilience Alliance 

(now Climate Resilience Alliance), in partnership of NGOs, humanitarian organizations, risk engineers, and 

researchers. It is the world's most widely used and validated community-level disaster and climate resilience 90 

measurement approach and has been applied in over 400 communities across more than 40 countries across the 

globe. The FRMC builds on a decade of evidence and real world impact generated through a community-led 

approach for practically and holistically measuring resilience to multiple hazards (Campbell et al., 2019; 

Keating et al., 2017a, 2025). The FRMC is built upon a rich dataset compiling information from households, 

key informants, focus groups and secondary sources. 95 

A central component of the framework is the five capitals (5Cs), which are broadly derived from the Sustainable 

Livelihoods Framework (Keating et al., 2014). The 5Cs represent different types of assets and resources that 

contribute to a community's overall well-being and its capacity to cope with and recover from shocks, including 

floods. A summary of each capital is provided next (Campbell et al., 2019; Keating et al., 2017a). 

Human Capital refers to the education, skills, health, and well-being of household members in a community that 100 

enhance their ability to prepare for and recover from a flood. Examples include flood preparedness knowledge, 

personal safety skills, and education levels. Social Capital encompasses the social relationships, networks, and 

shared norms that enable communities to support each other, such as formal community emergency services and 

community-led flood management efforts. Financial Capital includes the financial resources available to 

households and communities, such as savings, income, access to credit, and government funding for 105 

infrastructure. Physical Capital consists of the built infrastructure essential for both daily life and disaster 

response, including roads, communication systems, and flood defences. Finally, Natural Capital encompasses 

the natural resources and ecosystems that provide flood protection and sustain livelihoods, such as wetlands, 

forests, and managed biodiversity. 

Studies emphasize that these five capitals are interconnected and influence each other. For example, a 110 

community with strong social capital may be better able to mobilize financial resources or advocate for 

improved physical infrastructure. Similarly, investments in human capital, such as education and training, can 
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enhance a community's capacity to manage financial resources effectively or adopt flood-resilient building 

practices. The FRMC framework provides a comprehensive method for evaluating community flood resilience 

by recognizing these interconnections (Campbell et al., 2019; Chapagain et al., 2024b; Hochrainer-Stigler et al., 115 

2020, 2021; Keating et al., 2014). 

The 5Cs can play a crucial role in influencing mortality and morbidity outcomes after a flood event. For 

example, it is expected that communities with strong physical infrastructure, such as well-maintained drainage 

systems and flood-resistant housing, will tend to experience fewer injuries and fatalities. Similarly, robust social 

capital can support community-based early warning systems, aid vulnerable individuals, and ensure access to 120 

essential resources, potentially reducing health impacts. A study using FRMC data examined these effects and 

found that higher levels of natural, physical, and financial capital are linked to better resilience outcomes, 

resulting in reduced mortality and injury rates (Chapagain et al., 2024b). Specifically, communities with greater 

natural and physical capital reported fewer post-flood injuries and fatalities. Financial capital, particularly in 

urban areas, contributed to supporting post-flood livelihoods and governance. Although social and human 125 

capital had a smaller effect, they still played an important role, especially in rural communities where social 

capital enhanced mutual aid and recovery efforts. 

FRMC analysis can zoom into key phases of the DRM cycle, which is broken down into 5 stages (Keating et al., 

2017a, b). Prospective Risk Reduction involves taking proactive steps to prevent new risks from arising. 

Corrective Risk Reduction focuses on lowering risks for people and assets already at risk. Preparedness is about 130 

getting people and resources ready for possible events. Response encompasses the immediate measures 

implemented during and right after a disaster to reduce its effects. Recovery, on the other hand, includes both 

short- and long-term efforts aimed at supporting individuals and communities in managing the aftermath 

This paper contributes to the existing literature by analysing the effects on mortality and morbidity outcomes 

along resilience capitals and DRM cycle stage. 135 

3 Review: measurement and indicators 

3.1 Demographics and Morbi-mortality due to floods 

3.1.1 Gender and age 

Research suggests that the relationship between flood-related morbidity and mortality and age, and gender is 

complex as exposure and vulnerability factors often interact, with their impact on health and mortality 140 

frequently depending on the context. 

Evidence on the gender-specific effects of floods on mortality is well-documented. Globally, men generally 

experience higher mortality rates during flood events (Jerin et al., 2024; Petrucci, 2022). An analysis of research 

conducted in Europe, the United States, and Australia found that 65% of the studies reported consistently higher 

fatality rates among men. The study highlights that in the United States (1996–2014), male flood fatalities 145 

consistently outnumbered female ones across all scenarios. A similar pattern was observed in parts of Europe 

(1980–2018), where male fatalities were generally higher, except among the elderly. The review attributes this 

increased male vulnerability to greater exposure to flood hazards and the higher proportion of men who operate 

vehicles during such events (Petrucci, 2022).  
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Morbidity effects, on the other hand, tend to stress the vulnerability of women and of specific population age-150 

groups. For instance, a study emphasizes the heightened health vulnerabilities of women during floods due to 

factors like polluted water and challenges in menstrual management (Jerin et al., 2024). 

In contrast to gender influences, the effects of age on flood fatalities and injuries vary significantly across 

studies. Some research, for instance, emphasizes that older individuals are particularly prone to fatalities during 

and in the aftermath of floods (Ban et al., 2023; Yang et al., 2023), while there is evidence indicating that 155 

younger individuals can face a higher risk of mortality, specifically non-accidental deaths, during flood events 

compared to older adults (Ban et al., 2023). 

In sum, the literature indicates that the relationship between flood impacts and risk, age, and gender is 

multifaceted and requires further attention, also as some studies have suggested that women’s access to human, 

social, and financial resources can strengthen their ability to adapt to floods (Azad and Pritchard, 2023). This 160 

evidence is particularly relevant to our study, as we focus on the net effect of community resilience levels and 

DRM cycle stages on flood-related mortality and morbidity. 

3.1.2 Urban-Rural residence 

Studies show that geographic factors play a critical role in shaping flood-related mortality. Rural areas face 

higher risks due to slower emergency response capabilities, lower population densities that limit immediate aid 165 

from bystanders, a lack of protective infrastructure such as raised bridges, and their frequent location in 

headwater basins where floods develop rapidly, allowing little time for warning or evacuation. In contrast, the 

study finds that the presence of more valuable assets, higher average incomes, and housing structures can 

contribute to greater resilience and a reduced concentration of risk in urban areas (Petrucci, 2022).  

The intersection between demographic factors and urban/rural residence is also relevant. A study stresses that 170 

women in rural Bangladesh are more vulnerable to floods due to patriarchal norms that limit their access to 

resources and decision-making (Azad and Pritchard, 2023). 

In summary, research suggests that while both urban and rural areas face flood risks, specific setting factors may 

lead to significantly differential impacts on mortality and morbidity. Households and communities in rural areas 

often lack resources, infrastructure, and emergency response capabilities, making them more vulnerable to flood 175 

damage and associated health and mortality impacts. Urban areas, on the other hand, have been found to exhibit 

greater resilience due to better resources and infrastructure (Campbell et al., 2019), though specific 

vulnerabilities can exist within urban settings as well. For instance, dense urban development can lead to the 

substitution of natural flood risk reduction features within built infrastructure (Laurien et al., 2020, p.2). Further 

research is needed to understand the complex interplay of factors shaping flood vulnerability across different 180 

geographical contexts and population groups. 

3.2 The Impact of Flood Hazards and Exposure on Health and Mortality Outcomes using FRMC 

Research indicates a strong relationship between the severity of a flood event – often measured by a flood's 

return period – and its health and mortality impacts. For instance, studies using FRMC data show that 

communities hit by rare, catastrophic floods affecting large areas tend to report higher rates of injuries and 185 

property damage. Additionally, there is a solid connection between a flood's return period and a community’s 

preparedness; communities frequently exposed to milder recurrent floods (e.g., 1–2-year return periods) may 
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develop adaptive behaviours and a higher preparedness level, which can reduce injuries and speed recovery. In 

contrast, infrequent but severe floods (e.g., 50 and 100+ year return periods) often overwhelm even resilient 

communities, leading to more serious health and mortality consequences (Campbell et al., 2019; Chapagain et 190 

al., 2024b). Findings show also that extreme precipitation significantly increases mortality, with heavy rain days 

linked to a 45% rise in landslide mortality and a 33% increase in flood mortality (Chapagain et al., 2024c). 

4 Data 

The FRMC data set provides a rich and multifaceted view of flood resilience at community level, collected 

through a standardized framework and tool. This approach uses a flexible, mixed-method strategy where trained 195 

practitioners, often NGO staff, gather information via household surveys for individual and household data, 

community focus group discussions for collective insights, key informant interviews with knowledgeable 

community leaders, focus group discussions to capture specific perspectives, and third-party data sources like 

census data, government reports, or academic studies (Campbell et al., 2019; Hochrainer-Stigler et al., 2020, 

2021; Keating et al., 2014, 2017a, 2025; Laurien et al., 2020). 200 

The FRMC framework includes three key phases of data collection: baseline, post-event, and endline. Each 

phase captures specific aspects of a community's resilience and DRM cycle levels, providing a comprehensive 

view of how communities prepare for, respond to, and recover from flood events. 

Baseline Data Collection (BL) occurs before a flood event, establishing a snapshot of the community’s initial 

resilience and DRM capacity. This phase gathers data on the pre-existing sources of resilience across five 205 

capitals (human, social, physical, financial, and natural) and DRM cycle stages, offering a benchmark for 

tracking resilience changes over time and assessing intervention impacts. Data is collected through methods 

such as household surveys, community focus groups, key informant interviews, focus group discussions, and 

third-party sources like census or government reports. Collected data is graded from A (Best Practice) to D 

(Significantly Below Good Standard, Potential for Significant Loss), with aggregated scores (A=100, B=67, 210 

C=33, D=0) providing an overall picture of the community's resilience capacity. 

Post-Event Data Collection (PE) takes place after a flood impacts a participating community. Its purpose is to 

measure the actual effects of the flood on the community, as well as the resilience demonstrated through losses 

prevented and recovery speed. This data validates the effectiveness of resilience sources identified in the 

baseline phase. The focus is on 29 outcome measures, including control variables (like flood severity), impact 215 

variables (such as injuries or property damage), and action variables (like early warning use). A full description 

of the variables in provided in the appendices. Similar data collection methods to the baseline phase are used, 

and assessors apply professional judgment to grade resilience outcomes (A-D) based on observed impacts, 

allowing a comparison with baseline data to evaluate how resilience factors contributed to reducing losses and 

improving recovery. 220 

Endline Data Collection (EL) is conducted one to two years after the baseline, regardless of flood events in the 

interim. This phase reassesses the community's resilience capacity and measures any changes in the resilience 

sources, providing insights into intervention effectiveness, if applicable. Data collection mirrors the baseline, 

with updates to the community’s characteristics as needed.  

Together, these three data collection phases offer a detailed, dynamic perspective on community flood 225 

resilience. By examining resilience before, during, and after flood events, the FRMC framework helps clarify 
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which factors strengthen a community’s capacity to withstand floods, the success of implemented interventions, 

and how resilience evolves. 

In this study, we focus on baseline (BL) and post-event (PE) data. BL data provides insights into pre-flood 

resilience levels and DRM cycle stages indicators and the demographic profile of communities. PE data assesses 230 

three outcome variables: flood-related death counts, mortality due to illness within three months post-flood, and 

the number of injuries. Additionally, PE data is used to evaluate flood exposure (percentage of the community 

affected), and the flood return period. 

In addition to deaths occurring during a flood event, examining post-flood mortality due to illness within the 

following three months is also important – and can be effectively assessed using FRMC data. Evidence suggests 235 

that all-cause, cardiovascular, and respiratory mortality risks remain elevated for up to 60 days after flood 

exposure (Yang et al., 2023). 

This study examines the resilience of 66 riverine flood-prone communities in seven developing countries (Table 

A1, appendices), each of which experienced a flooding event following the baseline assessment. The time span 

for the start of post-event data collection ranges from 2019 to 2023. Although the data does not specify the exact 240 

date of the flood, post-event data was collected only from communities that experienced a flood after the 

baseline data collection. 

5 Methods for data analysis 

This section outlines the methods used in this study. We begin by describing the variables included in the 

analysis. For the resilience measures (the 5Cs), a detailed list of variables for each construct is provided in Table 245 

A2 (appendices). For the Disaster Management Cycle stages, which in line with the literature is broken down 

into the stages of Prospective Risk Reduction, Corrective Risk Reduction, Preparedness, Response and 

Recovery, a description is available on Table A3 (appendices). 

Outcome variables - mortality (immediate and delayed) and injuries - are presented in the questionnaire format 

in Table A4 (appendices). Finally, a description of the control variables, including flood exposure, return period, 250 

and community-level demographic indicators, are listed in Table A5 (appendices). 

In this analysis, variables gathered from different respondents (key informants, focus groups, and secondary 

sources) were averaged to produce a single response for each community. Household-level variables were also 

aggregated to the community level by averaging. One limitation is that demographic variables (age, gender, and 

urban-rural composition) reflect only the respondent’s information rather than all household members. 255 

Consequently, our approach provides an approximate demographic profile of each community. 

5.1 Principal Component Analysis (PCA) of the FRMC Five Capitals and DRM cycle stages 

To estimate the five capitals along the DRM cycle stages, we use a latent construct approach. Principal 

Component Analysis (PCA) is conducted to derive a single construct for each capital: social, physical, natural, 

human, and financial, as well as along each of the phases of the DRM cycle (Prospective Risk Reduction, 260 

Corrective Risk Reduction, Crisis Preparedness, Response, Recovery). Components are weighted by estimated 

population (households multiplied by average household size) to account for varying community scales. 

Validation of these constructs starts with decomposing the correlation matrix into eigenvalues and eigenvectors, 
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and a screeplot helped determine the number of factors to retain. We then calculate the Cronbach’s alpha 

coefficients (Table A6 and A7, appendices) to ensure it meets the acceptable threshold of 0.7. All DRM stages 265 

except Prospective Risk Reduction and Recovery met this criterion, which were close to 0.6. Histograms of the 

constructs (resilience and DRM cycles) are included in the appendices (Figures A1 and A2), as well as their 

corresponding screeplots (Figures A3 and A4). 

5.2 Community clusters 

5.1.1 Resilience levels 270 

A study using the FRMC framework has emphasized the importance of clustering communities to better 

understand how resilience changes over time (Chapagain et al., 2024a). Using hierarchical clustering methods, 

the study identifies five distinct community clusters based on the five capitals scores. A summary of the 

characteristics of the clusters is as follows. Table A8 (appendices) presents the distribution of the communities 

across the clusters. Figure A5 in the appendices present the average score of the five capitals by cluster in the 275 

baseline survey. 

• Cluster 1: Features the lowest resilience across all capitals. 

• Cluster 2: Exhibits marginally stronger performance in financial, human, and physical capital 

compared to natural and social capital. 

• Cluster 3: Presents relatively high human, natural, and social capital scores, but lower financial and 280 

physical capitals. 

• Cluster 4: Demonstrates generally higher average capital scores compared to Clusters 1-3, particularly 

in human, natural, and social capital. 

• Cluster 5: Exhibits the highest financial and physical capitals, with an overall profile of high average 

capital scores. 285 

In line with this approach, we group the 66 communities which experienced a flood event into the five resilience 

clusters. No community affected by flood was found in Cluster 5.  

5.1.2 DRM cycle stages 

We applied the same clustering methodology approach as Chapagain et al. (2024b) to the baseline data to 

classify the communities based on their DRM cycle performance, maintaining consistency with our earlier 290 

analysis approach. The dendogram revealed two distinct clusters according to DRM cycle stages. Figure A6 in 

the appendices present the average score of the five stages by cluster in the baseline survey. 

• Cluster 1: demonstrates strong capabilities across most dimensions of the DRM cycle. These 

communities exhibit above-average Preparedness. Their Protective Risk Reduction and their Recovery 

capabilities are notably strong.  295 

• Cluster 2: represent significant weaknesses across all measured DRM dimensions. These communities 

show poor Response and Recovery capabilities. Their Preparedness scores are substantially below 

average.  
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As made for the resilience clusters, we grouped the 66 communities which experienced a flood event into the 

two DRM cycle clusters. Table A8 (appendices) presents the distribution of the communities across the clusters. 300 

5.3 Regression adjustment 

To estimate the effect of the 5Cs and DRM cycle stages on morbidity and mortality outcomes, we use a quasi-

experimental research design based on regression adjustment (Angrist and Pischke, 2009, 2014; Imbens and 

Rubin, 2015). This method is a robust approach for identifying causal effects in observational data by 

addressing the challenge of confounding. While the FRMC dataset includes a longitudinal component (baseline, 305 

post-event, and endline data for tracking communities), for the post-event (PE) data, we only have one time 

point available. This necessitates controlling for baseline levels of resilience, DRM cycle stages, demographics, 

and flood exposure/hazard. 

Regression adjustment allows us to isolate the relationship of interest – the effect of the 5Cs and DRM cycle 

levels on morbidity and mortality indicators – by accounting for observable characteristics that could otherwise 310 

bias the estimated treatment effects. Properly specified regression models reduce systematic differences between 

units, thereby approximating ceteris paribus conditions and enhancing the validity of the causal inference. 

The analysis focuses on three main dependent variables. The first and second are the average number of injuries 

and deaths reported for men, women, and children, based on combined data from key informants, focus groups, 

and secondary sources. The third is the average number of individuals who lost their lives due to illnesses within 315 

three months following the flood. To ensure robustness, post-estimation diagnostics were conducted, including 

tests for overall model significance (R-squared) and comparison of AIC and BIC values to evaluate model fit. 

Ordinary least squares (OLS) regression was used as the primary method, incorporating nested models to assess 

how additional predictors contributed to the model’s explanatory power. We attempted to fit a zero-inflated 

Poisson model to address the high number of zeros in the mortality and morbidity counts. However, the model 320 

failed to converge, likely due to the small sample size of 66 communities. Finally, given the differing scales of 

predictors – such as the average return period (1 to 35) and the percentage of female household respondents (0 

to 1) – all predictors were standardized to enable meaningful comparison and interpretation of their relative 

importance. 

We use clustered standard errors to address the fact that observations within the same cluster might be like each 325 

other in terms of both resilience and DRM cycle levels. As we have a small number of clusters – 5 for resilience 

and 2 for the DRM cycle – we employ the wild bootstrap approach (Cameron et al., 2008). The wild bootstrap is 

primarily used to obtain more reliable inference – such as p-values and confidence intervals – by addressing 

issues like heteroskedasticity or a small number of clusters.  

6 Results 330 

Our analysis revealed distinct patterns in the relationships between the 5Cs, DRM cycle stages, and the 

morbidity and mortality outcomes, controlling for demographic characteristics and flood exposure/hazard. But 

let’s first begin with a description of the data. 

The distribution of the dependent variables – average injuries due to floods, average deaths, and average lives 

lost to illnesses within three months – is shown in histograms in Figures 1 and 2. Notably, all three variables 335 
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exhibit a high number of zeros, and the death counts are characterized by a low number of cases (maximum of 

11 for immediate mortality and 23 for delayed mortality). 

 

 

Figure 1: Average Number of Deaths (Immediate and Delayed) Reported in Flood-Affected Communities. 340 

 

Figure 2: Average Injuries Reported in Flood-Affected Communities. 

 

To facilitate interpretation, we use variable labels for statistics and regression results. We provide in Table 1 a 

description of the variables and in Table A9 (appendices) the descriptive statistics. 345 

 

Table 1: Description of Variable Labels  

Variable Description 

AverageAge15to25 The average proportion of the population aged 15 to 25 years in the 

community. 
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AverageAge26to50 The average proportion of the population aged 26 to 50 years in the 

community. 

AverageAge50plus The average proportion of the population aged 50 years and above in the 

community. 

AveragePercFemaleResp The average percentage of female respondents in the community. 

AverageRural The average proportion of the community classified as rural. 

AverageReturnPeriod The average return period of significant flooding events in years for the 

community. 

AveragePercComAffect The average percentage of the community affected by the flood. 

AvLostLivesDueInjuries3months The average number of lives lost due to injuries in the three months 

following the flood. 

AverageLostLife The average number of lives lost directly due to the flood. 

AverageInjuries The average number of injuries reported due to the flood. 

Source: FRMC. 

 

The regression results for the 66 communities that experienced a flood while controlling for demographics and 350 

flood exposure and hazard, are presented next. Due to the small sample size, a significance level of 10% was 

considered relevant (Cameron and Trivedi, 2005; Deaton, 1997). We tested different specifications to analyse 

the sensitivity of the parameters to the inclusion of control variables (see Tables A10 to A15 in the appendices), 

but the preferred model for the analysis is the full model (with all controls). There is a vivid discussion among 

statisticians and econometricians on the role of control variables and whether they should be excluded if there is 355 

not statistical significance. This paper takes the stand that considering the control variables is relevant because 

they have theoretical meaning and, hence, even a non-significant result is a relevant result (Deaton, 2010; Pearl, 

2000). Besides, as they help reduce omitted variable bias and improve causal inference (Angrist and Pischke, 

2009). Overall, the full model displayed also better fit in all specifications (R-squared and AIC/BIC). 

Another important issue for modelling is that, if the five resilience capitals or if the five DRM cycle stages are 360 

highly correlated, it can cause multicollinearity, making it difficult to determine their individual effects. High 

variance inflation factors (VIFs) would indicate if this is an issue. The results for the full model of the VIFs for 

the independent variables specified in the linear regression model shows that multicollinearity is present but not 

extreme, with mean VIF of 2.41. A mean VIF below 5 suggests that overall, a model is not suffering from 

severe multicollinearity (James et al., 2013). 365 

6.1 The Effect of Community Resilience on Health Outcomes 

Table 2 displays the results of the effect of the five resilience capitals on health outcomes (average deaths, 

average number of injuries, average number of deaths after three months). For first regression model, which 

analysed the effect of the five community resilience capitals on average deaths due to floods, no capital was 

found to be statistically significant. This lack of significant association is a critical finding. It suggests that 370 

certain forms of resilience, as currently measured, may not translate directly into reductions in flood-related 

mortality – or may only do so above a particular threshold of capital accumulation. Reporting such null results is 

essential to avoid publication bias and contributes to a more realistic understanding of the limits of resilience-

building initiatives in extreme events. The only statistically significant variable at the 1% level was the control 

for the percentage of the community affected by the flood, in which a one-standard deviation increase in this 375 

variable was associated with an increase of 0.27 deaths, everything else held constant.  
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Next, Table 2 displays the results of the second regression model, which analysed the effect of the five 

community resilience capitals on average injuries to floods. Two main results emerged regarding our impact 

variables. Social capital was found to be strongly associated with a decline of injuries, with a one-standard 

deviation increase in this indicator reducing the average number of injuries in 39 units (statistically significant at 380 

1% level). Also, Human capital was found to reduce injuries, with a one standard-deviation increase in this 

indicator leading to a drop of 5.97 injuries (statistically significant at 1% level). Regarding the controls, the 

average number of population aged 50 plus was also found to be negatively associated with injuries, with a one-

standard deviation increase in this variable associated with a decrease in 9.7 injuries, ceteris paribus 

(statistically significant at 1% level). This might indicate that older individuals are more likely to evacuate early 385 

or take preventive measures before disasters, reducing their likelihood of flood-related injuries. Finally, the 

percentage of the community affected by the flood was found to increase the number of injuries, in which a one-

standard deviation increase in this variable was associated with an increase of 18 injuries, everything else held 

constant.  

Finally, Table 2 shows the results of the third regression model, which analysed the effect of the five community 390 

resilience capitals on average fatalities after three months of the flood event. This model revealed an unexpected 

result: natural capital scores were positively associated with delayed mortality, everything held constant, with a 

one standard-deviation increase in this variable associated with an increase in 1.59 delayed deaths (significant at 

1% level). To further investigate this unexpected result, we ran a regression model with the same specification 

by cluster. The large coefficient for std_natural in Cluster 2 (9.387) could be driving the overall significant and 395 

positive effect. This makes theoretical sense, as natural capital in this cluster is low due to degraded natural 

environments and weak ecosystem services, even if some management efforts exist (Chapagain et al., 2024a). 

Because of this, small improvements may not help much, and the positive association with delayed mortality 

might reflect the overall vulnerability of these communities rather than a real benefit from natural capital. 

Contrary to the model for injuries, the average number of population aged 50 plus was found to be positively 400 

associated with delayed mortality, with a one-standard deviation increase in this variable associated with an 

increase in 1.07 deaths after three months of a flood, ceteris paribus (statistically significant at 1% level). Older 

individuals may have a higher likelihood of developing complications from flood-related injuries, infections, or 

chronic disease exacerbation. Conditions such as cardiovascular disease, respiratory illnesses, and weakened 

immune function could make them more vulnerable to delayed mortality rather than immediate death. 405 
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Table 2: Wild Bootstrap Clustered Regression Models with the impact of 5Cs on health and mortality outcomes 415 

Independent variables 

Dependent variables 

Average 

Fatalities 
 

Average 

Injuries 
 Average Fatalities After Three Months 

std_social 0.054  -39.976***  -0.179 

std_financial 0.203  15.602  -3.341 

std_physical -0.630  8.109  0.047 

std_human -0.256  -5.970***  -0.500 

std_natural 0.582  -11.277  1.591*** 

std_AverageAge15to25 -0.721  1.510  0.285 

std_AverageAge50plus -1.137  -9.735***  1.079*** 

std_AveragePercFemaleResp 0.459  -1.707  -0.088 

std_AverageRural 0.075  0.052  0.124 

std_AverageReturnPeriod 0.685  27.150  -0.645 

std_AveragePercComAffect 0.271***  18.123***  1.797 

Observations 66  66  66 

R-squared 0.49  0.61  0.35 

AIC 228.12  683.02  381.65 

BIC 234.69  689.58  388.22 

Observation: *** Significant at 1%; ** Significant at 5%; * Significant at 10% 

Source: FRMC. 

6.2 The Effect of DRM cycle stages on Health Outcomes 

The results for the equations of the effects along the DRM cycle stages on average fatalities after a flood event 

portray a different scenario from the resilience estimates presented before. We remember that we analyse 420 

throughout the paper the results for Model 7 only, which contains all the control variables. Table 3 summarizes 

the results. First, both Corrective Risk Reduction and Preparation scores were statistically associated with 

average number of deaths. Surprisingly, Corrective Risk Reduction was positively associated with average 

mortality, with a one-standard deviation increase in this score was associated with an increase in 0.65 deaths, 

everything held constant. To further investigate this counterintuitive finding, we conducted a cluster-specific 425 

regression analysis, which revealed substantial heterogeneity across community contexts. In Cluster 1, CRR 

showed a small negative association (coefficient = -0.03, p = 0.925), while Cluster 2 exhibited a stronger 

positive relationship (coefficient = 0.84, p = 0.396), suggesting this larger cluster may be driving the overall 

significant effect. Cluster 2 has significant weaknesses across all measured DRM cycle dimensions. These 

communities with low CRR scores might have implemented recent improvements that had not yet translated 430 

into reduced mortality outcomes during our study period, potentially creating a lagged effect where reported 

improvements coexist with historically high mortality rates. 

Preparation scores were negatively associated with average mortality, with a one standard-deviation increase in 

this indicator leading to a decrease in 0.53 deaths. This result is expected and aligns with disaster risk reduction 

intuition and theories. Preparedness significantly reduces immediate flood mortality by enhancing early 435 
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response. Effective warning systems and safety knowledge help individuals take timely protective actions, 

minimizing exposure to life-threatening conditions. Well-developed emergency infrastructure and coordinated 

response efforts ensure that communities can react efficiently, preventing avoidable deaths. Additionally, strong 

community participation and external support improve rescue operations and medical aid delivery, further 

reducing fatalities.  440 

Finally, more control variables now display a significant relationship with the average number of deaths, being 

the average percentage of young population (15 to 25 years) and the average percentage of elderly (50 or more) 

negatively associated with the number of deaths (significant at 1% level). The explanations are quite 

straightforward: older individuals tend to take disasters more seriously, acting cautiously in response to early 

warnings and evacuation orders. Life experience and risk awareness help them recognize the severity of floods 445 

and take protective measures earlier, reducing their chances of fatal exposure. Younger individuals tend to have 

better physical strength, endurance, and mobility, which increases their chances of escaping hazardous flood 

conditions. They are less likely to suffer from mobility limitations or pre-existing health conditions that make 

evacuation or survival difficult. Next, the average percentage of rural population was positively associated with 

the number of deaths, with a one standard-deviation increase in this percentage related to 0.09 deaths. Factors 450 

such as socio-economic settings, water, sanitation condition, and state of public health infrastructure of rural 

areas can contribute to health complications and mortality (Jerin et al., 2024). Finally, flood hazard (return 

period) and exposure (percentage of community affected) are positively associated with mortality at the 1% of 

confidence level. 

The model results for average injuries and its relationship with DRM cycle stages are also presented in Table 3. 455 

For this outcome variable, the results for Corrective Risk Reduction (CRR) and Preparedness are in line with the 

expectations: a one standard-deviation increase in CRR reduces the average number of injuries in 31 units; also, 

a one standard-deviation increase in Preparedness reduces the indicator in 23 units. Surprisingly, a one standard-

deviation increase in the Prospective Risk Reduction (PRR) increases the number of injuries in 6 units. To 

further investigate our counterintuitive finding regarding PRR, we again conducted a cluster-specific regression 460 

analysis, which revealed that in Cluster 1, which is characterized by high levels of overall preparedness, PRR 

maintained a significant positive relationship with injuries (coefficient = 4.88, p = 0.021), while in Cluster 2, the 

relationship was weaker and non-significant (coefficient = 2.93, p = 0.781). This pattern suggests that in 

communities with stronger overall disaster management systems (Cluster 1), there may be more effective injury 

reporting and documentation mechanisms in place, leading to higher recorded injury rates despite better 465 

prevention measures. The results for control variables show that the average number of elderly is negatively 

associated with the number of injuries (significant at 1%), whereas flood hazard and exposure are positively 

associated with the number of injuries. 

Finally, Table 3 presents the results for the impact along DRM cycle stages on delayed mortality from floods 

(after 3 months). Results are in line and expected as per the literature regarding two DRM cycle stages: 470 

Prospective Risk Reduction (PRR) and Recovery. A one standard-deviation increase in the PRR score is 

associated with a decrease in 1.75 delayed deaths, everything held constant. Also, a one standard-deviation 

increase in the Recovery indicator is associated with a decline in 3.57 deaths, ceteris paribus. Surprisingly, the 

only significant control variables for delayed mortality are flood exposure (percentage of the community 

affected) and hazard (return period), with a one-standard deviation increase in these indicators associated with a 475 
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decrease in delayed deaths. These results appear counterintuitive, as one would expect communities with more 

frequent disasters (shorter return periods) and greater affected populations to experience higher delayed 

mortality. Cluster-specific analysis revealed distinct patterns: in Cluster 1, neither variable showed significant 

relationships with delayed mortality (return period: coefficient = 1.98, p = 0.523; community affected: 

coefficient = 0.27, p = 0.877). However, in Cluster 2, both variables showed negative associations, with the 480 

community affected percentage approaching significance (coefficient = -1.98, p = 0.089) and return period 

showing a similar trend (coefficient = -1.42, p = 0.100). This may be associated with a survivorship bias or a 

“harvesting” effect: the most vulnerable individuals (e.g., the elderly, those with pre-existing health conditions) 

may succumb quickly after the flood, reducing the number of people who would die in the delayed mortality 

window. Alternatively, this finding may reflect a reporting phenomenon where communities with more frequent 485 

disasters have better systems for attributing later deaths to the original disaster event. 

 

Table 3: Wild Bootstrap Clustered Regression Models with the impact of DRM cycle stages on health and 

mortality outcomes 

Independent variables 

Dependent variables 

Average 

Fatalities 
 Average Injuries  Average Fatalities After Three Months 

std_CRR 0.656***  -30.906***  1.285 

std_PREP -0.532***  -23.375***  0.637 

std_PRR 0.022  5.921***  -1.758*** 

std_RECOV -0.019  27.943  -3.577*** 

std_RESP -0.419  -3.674  -0.031 

std_AverageAge15to25 -0.744***  3.069  -0.045 

std_AverageAge50plus -0.925***  -14.998***  -0.030 

std_AveragePercFemaleResp 0.490  -3.284  0.137 

std_AverageRural 0.094***  -3.781  0.136 

std_AverageReturnPeriod 0.845***  25.841***  -0.458*** 

std_AveragePercComAffect 0.243***  13.702***  -1.503*** 

Observations 66  66  66 

R-squared 0.45  0.59  0.38 

AIC 228.86  681.17  374.33 

BIC 231.04  683.36  376.52 

Observation: *** Significant at 1%; ** Significant at 5%; * Significant at 10% 490 

Source: FRMC. 

 

Interestingly, several DRM stages – including Corrective Risk Reduction and Preparedness – did not show 

statistically significant associations with delayed mortality. While these might initially appear as disappointing 

results, they offer crucial insights: either the health effects of floods evolve differently over time, or current 495 

DRM metrics may not fully capture interventions that affect medium-term health outcomes. 
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7 Discussion and conclusions 

The goal of this paper was to explore the role of resilience and DRM cycle stages on health and mortality 

outcomes after flood events for 66 countries across seven countries participating in the Flood Resilience 

Measurement for Communities (FRMC). Namely, how latent capacities determine outcomes, in terms of 500 

reduced mortality and morbidity. 

We advance current literature not only by incorporating a novel and rich dataset, but also by controlling in our 

impact analysis by relevant variables such as the demographic profile of the community and flood hazard and 

exposure. The literature stresses the role of these variables, and they are necessary to avoid confounding in the 

econometric analysis. Their significance in some models do endorse their relevance for the analysis, and the 505 

quality of the adjustment in the full models (with all controls) justify their inclusion. 

Our results demonstrate the relevance of selected resilience scores and DRM cycle stages for health and 

mortality outcomes, with some unexpected results as well. Resilience models indicate that both social capital 

and natural capital are statistically, strongly, and negatively associated with the average number of injuries. 

However, apart from natural capital, none of the resilience indicators showed a statistically significant 510 

association with either immediate fatalities or fatalities occurring within three months, when controlling for all 

other factors. The absence of significant effects underscores the complexity of translating community capacity 

into lifesaving outcomes. These null results align with a growing body of development research that recognizes 

the importance of publishing and interpreting non-significant effects – not as failures, but as evidence that helps 

refine theories, interventions, and measurement tools. Surprisingly, natural capital scores were found to be 515 

strongly and positively associated with delayed mortality, an unexpected result that warrants further 

investigation. The control variable for flood exposure was statistically related to the number of deaths and 

injuries, while the average number of elderly individuals was negatively associated with the number of injuries 

but positively associated with delayed mortality.  

In contrast, the DRM Cycle models demonstrate greater predictive power in terms of significant variables for 520 

health and mortality outcomes compared to resilience models, although some variables show unexpected effects. 

Preparedness emerged as the most relevant DRM stage, significantly leading to reductions in both immediate 

fatalities and injuries. The Corrective Risk Reduction stage was found to decrease injuries but unexpectedly 

increased fatalities. Recovery and Response were negatively associated with delayed mortality, aligning with 

existing literature on disaster risk management. Regarding control variables, both elderly and young populations 525 

were associated with a reduction in immediate fatalities, while the percentage of elderly individuals specifically 

contributed to a decrease in injuries. Also, a higher percentage of the rural population was positively correlated 

with the number of immediate deaths. For flood exposure and hazard indicators, these variables were strongly 

and positively associated with average fatalities and injuries but negatively associated with delayed mortality. 

While prior research emphasizes their role in increasing health risks, this pattern might suggest that the most 530 

vulnerable individuals, such as older adults or those with preexisting health conditions, are more likely to 

succumb soon after the flood. Consequently, fewer individuals remain who could die later, leading to a lower 

number of delayed deaths. 

The study has limitations that should be considered when interpreting the results. One key limitation is the small 

sample size, which may pose statistical challenges in estimating more complex models, such as zero-inflated 535 

specifications. Additionally, the study includes a small number of clusters, which can impact the reliability of 
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statistical inferences. To mitigate this issue, the analysis incorporates the use of wild bootstrap methods, 

providing a more robust approach to addressing the potential shortcomings in cluster representation. 

Another limitation arises from the measurement of certain constructs, as they are not always well defined by a 

single indicator. This could introduce measurement errors, potentially affecting the accuracy and consistency of 540 

the results.  

Finally, the demographic profile used in the study serves as a proxy variable for population characteristics, but it 

is representative only of household heads. This limitation may reduce the accuracy of the demographic analysis, 

as it does not fully capture the diversity and distribution of characteristics across the broader population. 

Future research should expand the sample size to improve statistical power and allow for more complex 545 

modeling approaches. It should also explore the temporal dynamics of resilience and DRM interventions, 

particularly the lag between implementation and their impact on health outcomes. Additionally, improving 

demographic data availability would strengthen causal inference and help explain counterintuitive results.  
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Appendices 

Table A1: Distribution of the communities affected by floods by country. FRMC data 550 

Country Frequency 

Bangladesh 32 

El Salvador 2 

Malawi 8 

Mexico 3 

Nepal 5 

Senegal 4 

Vietnam 12 

Total 66 

Source: FRMC. 

 

Table A2: Variables according to FRMC five capitals 

Financial Human Natural Physical Social capital 

Household asset 

recovery 

Evacuation and 

safety knowledge 

Natural capital 

condition 

Flood healthcare 

access 

Community participation 

in flood-related activities 

Community disaster 

fund 

First aid knowledge Priority natural 

units 

Early Warning 

Systems (EWS) 

External flood response 

and recovery services 

Business continuity Education 

commitment during 

floods 

Priority 

managed units 

Flood 

emergency 

infrastructure 

Community safety 

Household income 

continuity strategy 

Flood exposure 

awareness 

Natural 

resource 

conservation 

Provision of 

education 

Community disaster risk 

management planning 

Risk reduction 

investments 

Asset protection 

knowledge 

Natural habitat 

restoration 

Household flood 

protection 

Community structures for 

mutual assistance 

Disaster response 

budget 

Future flood risk 

awareness 

 
Large scale 

flood protection 

Community representative 

bodies 

Conservation 

budget 

Water and sanitation 

awareness 

 
Transportation 

interruption 

Social inclusiveness 

 
Environmental 

management 

awareness 

 
Communication 

interruption 

Local leadership 

 
Governance 

awareness 

 
Flood 

emergency food 

supply 

Inter-community flood 

coordination 

   
Flood safe water Integrated flood 

management planning    
Flood waste 

contamination 

National forecasting policy 

& plan    
Flood energy 

supply 

 

Source: FRMC. 

Table A3: Variables according to FRMC DRM Cycle 555 

Corrective Risk 

Reduction 

Preparedness Prospective Risk 

Reduction 

Recovery Response 

Risk reduction 

investments 

Business continuity Conservation budget Household 

asset 

recovery 

Disaster response 

budget 

Asset protection Evacuation and safety Future flood risk Community Water and sanitation 
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knowledge knowledge awareness disaster fund awareness 

Governance 

awareness 

First aid knowledge Environmental 

management 

awareness 

Provision of 

education 

Flood healthcare 

access 

Natural habitat 

restoration 

Early Warning Systems 

(EWS) 

Natural capital 

condition 

Flood 

energy 

supply 

Transportation 

interruption 

Household flood 

protection 

Flood emergency 

infrastructure 

Priority natural units Community 

safety 

Communication 

interruption 

Large scale flood 

protection 

Community participation 

in flood-related activities 

Natural resource 

conservation 

 
Flood emergency 

food supply 

Community 

representative 

bodies 

External flood response 

and recovery services 

Community disaster risk 

management planning 

Flood safe water 

Social 

inclusiveness 

Inter-community flood 

coordination 

Local leadership Flood waste 

contamination 

Integrated flood 

management 

planning 

National forecasting policy & 

plan 

 Community structures 

for mutual assistance 

Source: FRMC. 

Table A4: Outcome variables for analysis 

Outcome 

variable 

Description Dataset Respondents 

Injuries How many men in the community suffered serious 

injuries in the flood? 

PE Key informant, focus 

group, secondary 

source How many women in the community suffered serious 

injuries in the flood? 

How many children in the community suffered 

serious injuries in the flood? 

How many men in the community suffered serious 

injuries in the flood? 

Deaths How many men in the community lost their lives in 

the flood? 

PE Key informant, focus 

group, secondary 

source How many women in the community lost their lives 

in the flood? 

How many children in the community lost their lives 

in the flood? 

Deaths after 3 

months 

Compared to the number of people who lose their 

lives from these illnesses in non-flood times, how 

many additional people lost their lives due to these 

illnesses in the 3 months following the flood? 

PE Key informant, focus 

group, secondary 

source 

Source: FRMC. Note: PE: Post-event survey 

 

Table A5: Control variables 560 

Control variable Description Dataset Respondents 

Average Percentage of 

Population Affected by 

Flood 

What percentage of the community was directly 

impacted by the flood? 

PE Key informant, 

focus group, 

secondary source 

Average Flood Return 

Period 

What is the return period or re-occurrence interval 

of this flood, in number of years? In other words, 

how often is a flood of this size or bigger 

expected/experienced in the community? 

PE Key informant, 

focus group, 

secondary source 

Age Group Distribution 

(%) 

Which of the following age groups do you fall into: 

15-25, 26-50, or over 50? 

BL Household 

Gender Distribution (%) What is your gender: Male, Female, Other? BL Household 
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Average Rural 

Composition (%) 

Is this a rural, urban, or peri-urban community? BL Household 

Source: FRMC. Note: PE: Post-event survey; BL: Baseline survey 

 

Table A6: Cronbach’s alpha for the five capitals in the FRMC 

Capital Number of items on the scale Cronbach's alpha 

Financial 7 0.7710 

Social 11 0.8453 

Physical 12 0.8275 

Human 9 0.7053 

Natural 5 0.7022 

Source: FRMC. 

 565 

Table A7: Cronbach’s alpha for the DRM cycle stages 

DRM Indicator Number of items on the scale Cronbach's alpha 

Corrective Risk Reduction 9 0.7365 

Preparedness 9 0.7404 

Prospective Risk Reduction 8 0.5646 

Recovery 5 0.5830 

Response 9 0.7727 

Source: FRMC. 
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(a) Financial (b) Social 

  

(c) Physical (d) Human 

 
 

(e) Natural  

 

 

Figure A1: Histograms for the FRMC five capitals 
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(a) Corrective Risk Reduction (b) Preparedness 

  

(c) Prospective Risk Reduction (d) Recovery 

  

(e) Response  

 

 

Figure A2: Histograms for the DRM cycle stages 570 

 

 

 

 

 575 
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(a) Financial (b) Social 

  

(c) Physical (d) Human 

  

(e) Natural  

 

 

Figure A3: Screeplots for the FRMC five capitals 
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(a) Corrective Risk Reduction (b) Preparedness 

  

(c) Prospective Risk Reduction (d) Recovery 

  

(e) Response  

 

 

Figure A4: Screeplot for the DRM cycle stages 580 

 

Table A8: Distribution of the 66 communities that have experienced flood according to resilience clusters 

Cluster Freq. Perc. Cum. 

1 43 65.1 65.1 

2 5 7.6 72.7 

3 4 6.0 78.8 

4 14 21.2 100.00 

Total 66 100  
Source: FRMC 

 

 585 

Table X: Distribution of the 66 communities that have experienced flood according to DRM cycle clusters 

Cluster Freq. Perc. Cum. 
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1 27 40.9 40.9 

2 39 59.1 100.00 

Total 66 100  
Source: FRMC 

 

 

 590 

Figure A5: Mean of resilience capitals scores by cluster in the baseline survey 

 Figure A6: Mean of DRM cycle stages scores by cluster in the baseline survey 

 

 595 
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Table A9: Descriptive statistics for the control and dependent variables 

Variable Observations Mean Std. Dev. Min Max 

AverageAge15to25 66 0.100 0.079 0.000 0.324 

AverageAge26to50 66 0.586 0.185 0.184 0.928 

AverageAge50plus 66 0.315 0.203 0.036 0.816 

AveragePercFemaleResp 66 0.577 0.143 0.198 0.836 

AverageRural 66 0.803 0.401 0.000 1.000 

AverageReturnPeriod 66 8.111 8.793 1.000 35.000 

AveragePercComAffect 66 0.710 0.225 0.183 1.000 

AvLostLivesDueInjuries3months 66 1.695 4.458 0.000 23.000 

AverageLostLife 66 1.045 1.978 0.000 11.000 

AverageInjuries 66 48.668 68.475 0.000 257.750 

Source: FRMC. 
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Table A10: Comparison of Wild Bootstrap Clustered Regression Models for Assessing Community Resilience and Its 600 

Impact on Average Loss of Life 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

std_social -0.537*** -0.371 0.190 0.191 0.097 0.112 0.054 

std_financial 0.260 0.053 0.215 0.322 0.391 0.218 0.203 

std_physical -0.583 -0.706 -0.846 -0.917 -0.854 -0.755 -0.630 

std_human -0.472 -0.609 -0.601 -0.466 -0.468 -0.229 -0.256 

std_natural 0.434 0.464 0.644 0.618 0.659 0.543 0.582 

std_AverageAge15to25  -0.449 -0.529 -0.650 -0.651 -0.744 -0.721 

std_AverageAge50plus    -0.887* -1.011 -0.961 -1.146 -1.137 

std_AveragePercFemaleResp    0.409 0.464 0.432 0.459 

std_AverageRural     0.236 0.131 0.075 

std_AverageReturnPeriod      0.695 0.685 

std_AveragePercComAffect             0.271*** 

Observations 66 66 66 66 66 66 66 

R-squared 0.23 0.27 0.35 0.38 0.39 0.48 0.49 

AIC 255.23 251.66 243.44 240.39 239.63 229.43 228.12 

BIC 261.79 258.23 250.01 246.96 246.20 236.00 234.69 

Observation: *** Significant at 1%; ** Significant at 5%; * Significant at 10% 

Source: FRMC. 
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Table A11: Comparison of Wild Bootstrap Clustered Regression Models for Assessing Community Resilience and Its 

Impact on Average Injuries 605 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

std_social -36.145 -37.254 -33.537 -33.547 -36.736 -36.127*** -39.976*** 

std_financial 19.833 21.218 22.288 21.208 23.513 16.631 15.602 

std_physical -6.930 -6.104 -7.032 -6.320 -4.203 -0.243 8.109 

std_human -13.281 -12.361 -12.310 -13.667 -13.742 -4.156 -5.970*** 

std_natural -11.879*** -12.076*** -10.884*** -10.627*** -9.240*** -13.873 -11.277 

std_AverageAge15to25 
 

3.013 2.486 3.704 3.672 -0.068 1.510 

std_AverageAge50plus 
  

-5.878 -4.633 -2.935 -10.352 -9.735*** 

std_AveragePercFemaleResp 
   

-4.106*** -2.251 -3.516 -1.707 

std_AverageRural 
    

7.992*** 3.786 0.052 

std_AverageReturnPeriod 
     

27.799 27.150 

std_AveragePercComAffect             18.123*** 

Observations 66 66 66 66 66 66 66 

R-squared 0.45 0.45 0.46 0.46 0.46 0.57 0.61 

AIC 705.24 705.07 704.72 704.44 703.68 688.74 683.02 

BIC 711.81 711.64 711.29 711.01 710.25 695.31 689.58 

Observation: *** Significant at 1%; ** Significant at 5%; * Significant at 10% 

Source: FRMC. 

 

 

 610 
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Table A12: Comparison of Wild Bootstrap Clustered Regression Models for Assessing Community Resilience and Its 

Impact on Average Fatalities After Three Months 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

std_social 0.096 -0.011 -0.687 -0.687 -0.546 -0.561 -0.179 

std_financial -3.493 -3.359 -3.554 -3.517 -3.619 -3.443 -3.341 

std_physical 0.846*** 0.925*** 1.094*** 1.070 0.976 0.875 0.047 

std_human -0.565 -0.476 -0.485 -0.439 -0.436 -0.680 -0.500 

std_natural 2.037*** 2.017*** 1.801 1.792 1.730 1.849 1.591*** 

std_AverageAge15to25 
 

0.291 0.387 0.345 0.346 0.442 0.285 

std_AverageAge50plus 
  

1.069*** 1.026*** .951*** 1.140*** 1.079*** 

std_AveragePercFemaleResp 
   

0.141 0.059 0.091 -0.088 

std_AverageRural 
    

-0.354 -0.246 0.124 

std_AverageReturnPeriod 
     

-0.710 -0.645 

std_AveragePercComAffect             1.797 

Observations 66 66 66 66 66 66 66 

R-squared 0.27 0.27 0.28 0.28 0.29 0.30 0.35 

AIC 389.93 389.74 388.34 388.30 388.12 387.08 381.65 

BIC 396.50 396.31 394.91 394.87 394.69 393.65 388.22 

 

Observation: *** Significant at 1%; ** Significant at 5%; * Significant at 10% 615 

Source: FRMC. 
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Table A13: Comparison of Wild Bootstrap Clustered Regression Models for Assessing DRM cycle levels and Its Impact on 620 

Average Fatalities 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

std_CRR -.015*** 0.100 0.315*** 0.335*** 0.613*** 0.716*** 0.656*** 

std_PREP -.577***  -0.550*** -0.460*** -0.491*** -0.699*** -0.597*** -0.532*** 

std_PRR 0.095 0.131 0.022 0.025 0.029 0.068 0.023 

std_RECOV 0.482 0.062 0.299*** 0.314*** 0.874*** 0.079*** -0.019 

std_RESP  -.774*** -0.640*** -0.743*** -0.734*** -1.063*** -0.563*** -0.420 

std_AverageAge15to25 
 

 -0.344*** -0.312*** -0.313*** -0.447*** -0.741*** -0.744*** 

std_AverageAge50plus 
  

-0.528*** -0.516*** -0.733*** -0.901*** -0.925*** 

std_AveragePercFemaleResp 
   

0.599 0.676 0.491 0.491 

std_AverageRural 
    

0.278*** 0.172*** 0.094*** 

std_AverageReturnPeriod 
     

0.832*** 0.845*** 

std_AveragePercComAffect             0.243*** 

Observations 66 66 66 66 66 66 66 

R-squared 0.20 0.22 0.25 0.31 0.32 0.44 0.45 

AIC 253.52 251.91 249.00 243.61 242.67 229.72 228.86 

BIC 255.71 254.10 251.19 245.80 244.86 231.91 231.04 

Observation: *** Significant at 1%; ** Significant at 5%; * Significant at 10% 

Source: FRMC. 
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Table A14: Comparison of Wild Bootstrap Clustered Regression Models for Assessing DRM cycle levels and Its Impact on 

Average Injuries 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

std_CRR -32.123*** -36.119*** -32.668*** -32.294***  -30.654*** -27.559 -30.906*** 

std_PREP -28.290*** -29.227*** -27.792*** -27.963*** -30.126*** -27.041*** -23.375*** 

std_PRR 10.098*** 8.831*** 7.077*** 7.057*** 7.290*** 8.478*** 5.921*** 

std_RECOV 36.256*** 50.975 54.779 55.717 57.476 33.488 27.944 

std_RESP -19.805*** -24.528*** -26.193*** -26.870*** -26.831*** -11.777 -3.675 

std_AverageAge15to25 
 

12.051 12.555 12.306 12.081 3.224 3.070 

std_AverageAge50plus 
  

-8.446*** -8.934*** -8.557*** -13.617*** -14.998*** 

std_AveragePercFemaleResp 
   

1.259 2.309 -3.256*** -3.285 

std_AverageRural 
    

3.814*** 0.593 -3.782 

std_AverageReturnPeriod 
     

25.092*** 25.841*** 

std_AveragePercComAffect             13.702*** 

Observations 66 66 66 66 66 66 66 

R-squared 0.46 0.48 0.49 0.49 0.49 0.58 0.59 

AIC 699.54 697.23 696.38 696.35 696.17 684.03 681.17 

BIC 701.73 699.42 698.57 698.54 698.36 686.22 683.36 

Observation: *** Significant at 1%; ** Significant at 5%; * Significant at 10% 

Source: FRMC. 640 
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Table A15: Comparison of Wild Bootstrap Clustered Regression Models for Assessing DRM cycle levels and Its Impact on 

Average Fatalities After Three Months 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

std_CRR 0.956 1.020*** 1.085 1.132 0.964 0.917 1.285 

std_PREP 0.843 0.858 0.885 0.863 1.085*** 1.039*** 0.637 

std_PRR -1.983*** -1.962*** -1.995*** -1.997*** -2.021*** -2.039*** -1.758*** 

std_RECOV -4.314*** -4.553*** -4.482*** -4.365*** -4.545*** -4.185*** -3.577*** 

std_RESP 1.127*** 1.204*** 1.173*** 1.088*** 1.084*** 0.858*** -0.031 

std_AverageAge15to25 
 

-0.196 -0.187 -0.218 -0.195 -0.062 -0.045 

std_AverageAge50plus 
  

-0.157 -0.219 -0.257 -0.181 -0.030 

std_AveragePercFemaleResp 
   

0.158 0.050 0.134 0.137 

std_AverageRural 
    

-0.392 -0.344 0.136 

std_AverageReturnPeriod 
     

-0.376 -0.458*** 

std_AveragePercComAffect             -1.503*** 

Observations 66 66 66 66 66 66 66 

R-squared 0.34 0.34 0.34 0.34 0.35 0.35 0.38 

AIC 378.63 378.55 378.51 378.46 378.22 377.91 374.33 

BIC 380.82 380.74 380.70 380.65 380.41 380.10 376.52 

Observation: *** Significant at 1%; ** Significant at 5%; * Significant at 10% 

Source: FRMC. 655 
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